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Abstract
Scene graph aims to faithfully reveal humans’ perception of image content. When humans look at a scene, they usually focus
on their interested parts in a special priority. This innate habit indicates a hierarchical preference about human perception.
Therefore, we argue to generate the Scene Graph of Interest which should be hierarchically constructed, so that the important
primary content is firstly presented while the secondary one is presented on demand. To achieve this goal, we propose the
Tree–Guided Importance Ranking (TGIR) model. We represent the scene with a hierarchical structure by firstly detecting
objects in the scene and organizing them into a Hierarchical Entity Tree (HET) according to their spatial scale, considering that
larger objects aremore likely to be noticed instantly. After that, the scene graph is generated guided by structural information of
HET which is modeled by the elaborately designed Hierarchical Contextual Propagation (HCP) module. To further highlight
the key relationship in the scene graph, all relationships are re-ranked through additionally estimating their importance by the
Relationship Ranking Module (RRM). To train RRM, the most direct way is to collect the key relationship annotation, which
is the so-called Direct Supervision scheme. As collecting annotation may be cumbersome, we further utilize two intuitive and
effective cues, visual saliency and spatial scale, and treat them as Approximate Supervision, according to the findings that
these cues are positively correlated with relationship importance. With these readily available cues, the RRM is still able to
estimate the importance even without key relationship annotation. Experiments indicate that our method not only achieves
state-of-the-art performances on scene graph generation, but also is expert in mining image-specific relationships which play
a great role in serving subsequent tasks such as image captioning and cross-modal retrieval.

Keywords Key relationship · Hierarchical entity tree · Hierarchical contextual propagation · Relationship ranking · Spatial
scale · Visual saliency

1 Introduction

In an effort to thoroughly understand a scene, the scene
graph consisting of objects as nodes and relationships as
edges has been on the way to bridge the gap between low-
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level recognition and high-level cognition, and contributes to
tasks like cross-modal retrieval (Johnson et al., 2015; Wang
et al., 2020), image captioning (Chen et al., 2020; Gu et al.,
2019; Li & Jiang, 2019; Nguyen et al., 2021; Xu et al., 2019;
Yang et al., 2019; Yao et al., 2018; Zhong et al., 2020), visual
question answering (Antol et al., 2015; Tang et al., 2019),
visual reasoning (Shi et al., 2019), image generation (Gu et
al., 2019; Herzig et al., 2020; Johnson et al., 2018) and image
editing (Dhamo et al., 2020). While previous works (Guo et
al., 2021; Li et al., 2021, 2017; Suhail et al., 2021; Tang
et al., 2020, 2019; Wang et al., 2021, 2019; Zareian et al.,
2020a; Zellers et al., 2018) have pushed this area forward,
the generated scene graph may be still far from perfect. A
scene graph is not just for being admired, but is a type of
intermediate representations for supporting applications. To
this end, the scene graph is expected to at least sketch the
major content, i.e., gist, in the scene, which is generally of
human interest. However, most generated scene graphs fail
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Fig. 1 Scene graphs (right column) of two images with different major events generated by existing methods share similar structures (shown in
dashed regions), i.e., existing methods are deficient in mining the major image-specific relationships which are usually embedded in image captions
(middle column)

in this field in practice because current methods blindly pur-
sue content integrity, bringing the side effect that the gist is
overwhelmed by a large amount of trivial ones (Li & Jiang,
2019).

Let’s study the quality of scene graph generated by one
of the mainstream methods, Motif (Zellers et al., 2018). In
Fig. 1, two scene graphs shown with top-5 relationships for
two images are mostly the same although the major events in
these two images are quite different. In other words, existing
methods are deficient in mining the major image-specific
relationships which are usually embedded in image caption
(colored parts of the image captions in Fig. 1), but biased
towards self-evident or trivial ones (e.g., 〈woman, has, head〉
can be obtained from commonsense without observing the
image, and 〈window, on, building〉 does not deserve much
attention compared with other contents in both two images).
This shortage makes current scene graph filled with a large
body of relationships that are hardly concerned by humans.

Therefore, an urgently needed characteristic of a scene
graph is to assess the relationship importance and prioritize
the key relationships which form major content that humans
intend to preferentially convey. A few previous works, e.g.,
Graph R-CNN (Yang et al., 2018) and AVR (Lv et al., 2020),
consider that annotated relationships are important, and train
a light-weight binary classifier to filter unannotated pairs.
However, because of the universal phenomenon of long-
tailed distribution of relationships inmainstream scene graph
datasets such as Visual Genome (Krishna et al., 2017), the
annotated pairs are not necessarily important, but usually triv-
ial instead (see the statistical analysis in Sect. 4.1 for further
details).

Any pair of objects in a scene can be considered rele-
vant, at least in terms of their spatial configurations. Faced
with such amassive amount of relationships, how do humans

choose them to describe the images? Given the picture (ii) in
Fig. 2a which is a zoom-in sub-region of picture (i), humans
will describe it with 〈woman, riding, bike〉, since woman and
bike belong to the same perceptive level and their interac-
tion forms the major event in (ii). When it comes to picture
(iii), the answers would be 〈woman, wearing, helmet〉 and
〈bag, on, woman〉, where helmet and bag are finer details
of woman and belong to an inferior perceptive level. It sug-
gests that there naturally exists a hierarchical structure about
humans’ perception preference, as shown in bottom part of
Fig. 2a. If we attach the scene graph to this hierarchical struc-
ture, as shown in Fig. 2b, the relationships will be naturally
presented in a top-downmanner and the top relationships are
especially of human interest.

Inspired by these observations, we argue that a desir-
able scene graph should be configured with a hierarchical
structure, resulting in the Scene Graph of Interest (SGoI).
In SGoI, key relationships are grounded to the top levels
of the hierarchical structure, while the secondary or trivial
relationships are grounded to the bottom levels. To achieve
this goal, we develop the Tree-Guided Importance Ranking
(TGIR) model. We firstly construct the Hierarchical Entity
Tree (HET) comprising of objects (as nodes), each of which
can be decomposed into a set of finer ones. Different tree
levels stand for the perception priority of the objects. The
structural information of HET is modeled by the elaborately
designed Hierarchical Contextual Propagation (HCP) mod-
ule. HCP takes the object features from the object detector as
input, and passes messages among sibling nodes (transversal
direction) and nodes on each root-to-leaf path (longitudinal
direction) in HET to enhance object features. In this way,
each object obtains its own perception level information and
contextual information from those closely related objects,
which will benefit the importance ranking of relationships
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Fig. 2 The hierarchical structure about humans’ perception preference
is shown in the bottom part of a and pictures (i)∼(iii) illustrate a sub-
hierarchy. Our generated scene graph in b is attached to the hierarchical
structure and better capture the gist

and accuracy of relationship prediction respectively. These
enhanced object features are used to predict the final object
category and pair-wise relationship in a scene graph. In the
experiments, wewill show thatHET is indeed consistentwith
humans perception priority, and the generated scene graph
where relationships are sorted according to their importance
could be grounded to HET well.

As the structure information of HET acts as implicit guid-
ance, we attempt to further shift the attention of the scene
graph to the key relationships with explicit guidance. We
employ a Relationship Ranking Module (RRM) to predict
an importance score for each relationship. There are two
schemes for training this module. The most direct scheme
is to collect the key relationship annotation as supervision,
i.e., the so-called Direct Supervision (D-Sup) scheme. As the
annotation is not directly available from existing datasets, we
overcome this problem by drawing support from image cap-
tion in MS-COCO (Lin et al., 2014) to extend the Visual
Genome (VG) (Krishna et al., 2017) to VG-KR dataset
which contains indicative annotation of key relationships.
Besides, the key relationship annotationmakes it possible for

evaluating the performances of different models on key rela-
tionship prediction. Considering that the process of obtaining
key relationship annotation may be cumbersome, we fur-
ther introduce theApproximate Supervision (A-Sup) scheme
based on the findings that some objective cues such as spa-
tial scale and visual saliency, are positively correlated with
relationship importance. In thisway, reasonably ranking rela-
tionships is still feasible without key relationship annotation.

Preliminary version of this work has been published in
Wang et al. (2020). Compared with the conference version,
we have made three major extensions in this paper: First,
we present a graph-based modeling method in the proposed
HCPmodule. Itmodels the closely correlated sibling nodes in
HET as a sub-graph, and directly associates them to measure
their mutual effect more precisely, achieves better message
passing and feature enhancement. Second, we provide an
additional approximate supervision scheme which enables
the RRM training process when key relationship annotation
is unavailable and thus broads its application scope. Besides,
theRRMalsoworks in a slightly differentway,whichuses the
contextual relationship representation rather than the visual
features from the backbone as input. Furthermore, we find
that a Self-Attention based RRM performs better than the
previous bi-directional LSTM based one. Third, more exten-
sive experiments are conducted to verify the feasibility of the
approximate supervision scheme, compare with state-of-the-
art methods, and demonstrate the value of key relationship
on more subsequent tasks, e.g., cross-modal retrieval.

2 RelatedWorks

2.1 Scene Graph Generation

Scene graph generation (SGG) and Visual Relationship
Detection (VRD), are two most common tasks that aim at
detecting relationships between two objects. In the field of
VRD, various studies (Dai et al., 2017; Li et al., 2017; Lu
et al., 2016; Peyre et al., 2017; Yin et al., 2018; Yu et al.,
2017; Zhang et al., 2017a, b, 2019) mainly focus on detect-
ing each relationship independently rather than describing
the structure of the scene. At the very beginning, scene graph
is found useful in downstream applications including cross-
modal retrieval (Johnson et al., 2015) and image captioning
(Yang et al., 2019). A series of succeeding works struggle
to design various approaches to improve the quality of the
auto-generated scene graph. These works can be roughly
categorized into two types from the perspective of whether
it designs a specific model or proposes a model-agnostic
method:

Specific model design Early works concentrate on design-
ing various model structures or core message passing mech-
anism for gathering contextual information and improving
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the features. Xu et al. (2017) employ GRU Chung et al.
(2014) to pass messages between edges and nodes. Li et al.
(2017) enrich the scene graph representation by introduc-
ing image caption and object information to jointly address
multi-tasks. Wang et al. (2019) exploit both the object-level
and relationship-level context. Zellers et al. (2018) and Tang
et al. (2019) borrow the sequential or hierarchical modeling
mechanism fromLSTMHochreiter and Schmidhuber (1997)
or TreeLSTM Tai et al. (2015) to model the graph context.
Yang et al. (2018) and Qi et al. (2019) employ the graph
neural network. The widely adopted Transformer (Vaswani
et al., 2017) is also found effective in this field (Koner et
al., 2020). Besides, some methods borrow advantages from
knowledge or commonsense (Chen et al., 2019; Gu et al.,
2019; Zareian et al., 2020a, c) to assist relationship predic-
tion. Other works like GPS-Net (Lin et al., 2020) and WSP
(Zareian et al., 2020b) distinguish subject and object role of
each entity, and encode two types of features for these two
roles.

General framework design A recent trend of SGG is to
design amodel-agnostic framework or improve the loss func-
tion to tackle the long-tailed distribution problem and make
the scene graph informative, since the tail fine-grained pred-
icates are always overwhelmed by coarse ones and the scene
graph is not precise enough (Tang et al., 2020). Suhail et
al. (2021) creatively design the energy-based framework to
suppress the head predicates based on the mutual constraint
among predicates. Chiou et al. (2021) recover the unbiased
distribution of predicates by dynamically estimating their fre-
quency. Yu et al. (2021) construct a predicate tree and predict
relationships in a coarse-to-fine manner. Guo et al. (2021)
compute transition probability between head and tail pred-
icates so that the head ones can be reasonably transformed
into tail ones. Li et al. (2021) adopt re-sampling strategy
during both image-level sampling and instance-level sam-
pling stage. Tang et al. (2020) propose the unbiased learning
framework from the perspective of causal inference.

Despite that most previous works mentioned above con-
centrate on fitting the annotation passively without thinking
whether the relationships worth being predicted, there still
exist a few works that make a meaningful attempt, filtering
out some worthless relationships based on their own criteria.
Liang et al. (2019) prune the dominant and easy-to-predict
relationships to alleviate the annihilation problem of rare but
meaningful relationships. Graph R-CNN (Yang et al., 2018)
and AVR Lv et al. (2020) directly suppress relationships
which are not annotated, thinking that the annotated ones
are exactly the important ones. However, this is usually not
the truth because of the long-tailed distribution problem in
scene graph datasets (Li & Jiang, 2019; Tang et al., 2020).
It is worth noting that those relationships dropped by the
above works in a hard manner are not always wrong. Most
of them conform to the scene content. If they are directly

removed, it may damage the integrity of a scene graph. In
this work, we claim that trivial relationships should not be
directly eliminated, but should be arranged after the impor-
tant ones instead, i.e., we eliminate the trivial relationships
in a soft manner. In this way, the relationships are presented
according to their importance. The most important relation-
ships will be immediately given to convey the major content
of the scene, while secondary ones are just temporarily hid-
den. Once more details of the scene are further required, the
secondary relationships are presented.

2.2 Structured Scene Parsing

Scene graph generation can be regarded as a process of struc-
tured parsing of the scene. It is generally believed that the
scene has a hierarchical structure, which means that a scene
can be first decomposed into relatively independent object
clusters, and the object cluster is composed of several closely
related objects (Lin et al., 2016; Socher et al., 2011; Tang
et al., 2022). These independent objects can continue to be
decomposed into finer components. There are mainly two
strategies for constructing a hierarchical structure: top-down
and bottom-up strategy. Han and Zhu (2008) decompose the
scene to obtain a parse graph in a top-down manner, while
the scene structure in Lin et al. (2016); Socher et al. (2011) is
obtained by bottom-up merging from the smallest indivisible
elements. The structure is often used to assist other applica-
tions such as semantic segmentation (Sharma et al., 2015),
object recognition and detection (Zhu et al., 2011), and image
captioning (Yao et al., 2019), etc. In this work, we design a
heuristic algorithm to build the scene structure inspired by
human perception. After that, the structural information is
extracted to guide SGG in an important-to-ordinary manner.

2.3 Viusal Saliency v.s. Gist

The so-called gist in this work refers to key relationships
in a scene graph that form the major content of an image.
It may cause confusion with visual saliency. Relationships
about visual salient objects may be wrongly equated with
the key ones. We give a detailed discussion.

An extremely rich set of studies (Hou et al., 2017; Li &
Yu, 2015; Liu et al., 2018; Wang et al., 2015, 2017; Zhang
et al., 2019) focus on mining visually salient objects (high
contrast of luminance, hue, and saturation, center position
(Itti et al., 1998; Klein & Frintrop, 2011; Xie et al., 2012),
etc.). Prior works like (Pont-Tuset et al., 2020) proposes the
localized caption dataset based on the idea that each word in
a caption should be grounded, suggesting that there indeed
exists strong association between humans attention (visually
salient content) and their description (what they think impor-
tant) about an image. However, it is notable that the visually
salient content is not equal to that involved in the gist. He
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He et al. (2019) explore gaze data and find that only 48%
of fixated objects are referred in humans’ descriptions about
the image, while 95% of objects referred in descriptions are
fixated. It suggests that contents referred in a description
(i.e., contents that humans think important and should form
the major events/gist) are almost visually salient and reveal
where humans gaze, but what humans fixate (i.e., visually
salient contents) are not always what they want to convey.
Naturally, we need to emphasize that the levels in our con-
structed scene structure (HET) reflect the perception priority
level rather than the visual saliency. Besides, this finding
supports us to obtain the indicative annotations of key rela-
tionships with the help of annotated image caption.

3 Approach

A scene graph G = {O,R} of an image I contains a set
of objects O = {oi = (ci , bi )}Ni=1, and their pairwise rela-
tionships R = {rk}Mk=1, where ci ∈ C and C is the set of
category, bi ∈ R

4 is the bounding box. Each rk describes the
relationship between oi and o j and thus contains a predicate
pi j ∈ P , where P is the set of predicates.

The most widely-adopted scheme to generate the scene
graph G is to extract the set of relationships from the image
without considering the importance of each relationship. Our
goal is to generate the SGoI hierarchically, whose relation-
ships are sorted according to their importance. What’s more,
the sorted relationships could be grounded to the hierarchical
structure in a top-down manner.

To achieve this goal, we present the Tree-Guided Impor-
tance Ranking (TGIR) model as illustrated in Fig. 3. As
pointed out in Sect. 1, a scene graph should be configured
with a hierarchical structure. We first devise a heuristic hier-
archy construction method. The structural information of the
hierarchical structure is encoded to guide the scene graph
generation process. Finally, an explicit relationship impor-
tance estimation method is proposed to sort the relationships
so that they can be better grounded to the hierarchical struc-
ture. Therefore, ourmodel consists of fourmainmodules: (1)
a Backbone for generating object feature representations of
the scene; (2) aHierarchical Entity Tree (HET) Construc-
tion module for generating the hierarchical structure; (3) a
Hierarchical Contextual Propagation (HCP) module for
encoding the structural information and decoding it to gen-
erate the scene graph; (4) a Relationship Ranking Module
(RRM) for sorting the relationships according to their impor-
tance. In the following sub-sections, we will present the
detailed designs of each module.

3.1 Backbone

We adopt Faster R-CNN (Ren et al., 2015) detector as the
backbone. It produces N objects and each of them has the
1024-dim visual feature vi , the category distribution vector
qi ∈ R

|C| and the bounding box bi ∈ R
4. We compute

the semantic representation of each object as zi = W (1)
e qi ,

where W (1)
e is a word embedding matrix initialized from

GloVe Pennington et al. (2014), and concatenate it with the
visual feature:

xi = [vi ; zi ]. (1)

The resulting feature xi ∈ R
d is used as the input feature in

later process.

3.2 HET Construction

We aim to construct the Hierarchical Entity Tree (HET)
whose top-down levels are in accordance with the perceptive
levels of humans’ inherent scene parsing hierarchy. Psycho-
logical works (Navon, 1977; Biederman, 2017) have shown
that people perform rapid global scene analysis before con-
ducting more detailed local object analysis, and thus a scene
can be naturally represented by a perception related tree
structure. It is natural that a scene can be firstly decom-
posed into several large objects (clusters), and then these
objects (clusters) can be further decomposed into objects of
smaller-scale or components (Han & Zhu, 2008). Therefore,
the core idea for building HET is to arrange larger objects
(clusters) on top layers of HET as far as possible. Con-
cretely, HET is a multi-branch tree T with a virtual root
o0 standing for the whole image. We first sort the objects
in descending order according to their spatial scale and get
the sequence {oi1 , oi2 , . . . , oiN }. Then the tree structure is
determined by reasonably identifying the parent node of each
object. For object oin , we consider the objects with larger size
{oim | 1 ≤ m < n}, and compute the ratio

Pnm = I
(
oin , oim

)

A(oin )
, (2)

where A(·) denotes the size of the object and I (·, ·) is the
overlap area of two objects. In practice, we compute the over-
lap area of their bounding boxes. If Pnm is larger than a given
threshold T , oim will be a candidate parent node of oin since
oim contains most part of oin . If there is no candidate, the
parent node of oin is set as the root. If there are two or more
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Fig. 3 The framework of our TGIRmodel. An object detector is applied
and HET is constructed using detected objects. The object features are
fed into O-HCP and R-HCP module to obtain the contextual object and

relationship features which are decoded to predict the object category
and predicate. Furthermore, the RRM receiving two alternative types
of supervision estimates the importance to re-rank the relationships

Fig. 4 An illustration of the proposed HCP module which consists of two sub-modules, HCPL and HCPT . For an anchor object, HCPL broadcasts
the contextual information among its ancestors and descendants in bottom-up and top-down directions, while HCPT passes messages between its
sibling objects

candidates, we choose the candidate with the largest propor-
tion of the overlap area considering that it is most likely to
govern oin . A HET example is shown in Fig. 2a. The node of
woman governs its details such as the bag_2 and helmet_2.

3.3 Hierarchical Contextual Propagation

As the levels of HET stand for the perception priority of
the objects, we hope to model its structural information to
guide scene graph generation. For each anchor object1 in
HET, there exists two types of objects that are most likely

1 For convenience, we use “anchor” to refer to the target object that we
consider in following parts.
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to be strongly related to it. One type is the objects on the
same root-to-leaf path with the anchor (i.e., its ancestors
and descendants). These objects are either comprised of the
anchor or subordinate to the anchor. The other type is the sib-
lings which share a same parent with the anchor. They are on
the same perceptual level with the anchor and thus humans
tend to pay attention to their relationships with the anchor.

Inspired by these observations, we propose the Hierar-
chical Contextual Propagation (HCP) module to encode the
information from two types of objects above for each anchor
object, as illustrated in Fig. 4. The HCP module consists of
two sub-modules, one is the Longitudinal Contextual Prop-
agation (HCPL ) sub-module for broadcasting the contextual
information along the root-to-leaf paths of HET. The other
one is the Transversal Contextual Propagation (HCPT ) sub-
module. It passes messages between sibling objects. We
design two types ofHCPT sub-module, i.e., the bi-directional
LSTM based HCPT , and the multi-head graph attention
(mGAT) based HCPT . It consequently results in two types of
HCP, denoting by HCP-B and HCP-G. We will apply HCP
to encode the structural information then decode it to pre-
dict final object and predicate information which forms a
scene graph. The encoding and decoding processes are based
on HET and the object input features {xi }Ni=1 obtained in
Sect. 3.1. We will detail the HCP module below.

3.3.1 Longitudinal Contextual Propagation

The structure information inHET is expected to be embedded
in all objects through the longitudinal contextual propagation
along the vertical paths. It can be regarded as the sequen-
tial dependency modeling problem which is well-solved by
LSTM Hochreiter and Schmidhuber (1997). Specifically for
the tree structure, we adopt bidirectional multi-branch Tree-
LSTM(Tai et al., 2015) (Bi-TLSTM).Each object has its own
input feature x and an randomly initialized hidden state h. For
an anchor object ot , the bidirectional process of Bi-TLSTM
will collect information from its descendants (bottom direc-
tion) and ancestors (top-down direction) respectively, so that
ot receives information about its perception level in HET and
those objects that may form dependent association with it.

Let C(t) denote the set of children of ot . the bottom-up
direction of Bi-TLSTM will collect information from the
descendants of ot , which is formulated as follows:

h̃
↑
t =

∑

k∈C(t)

h↑
k ,

i↑t = σ
(
W↑

(i)xt + U↑
(i) h̃

↑
t + b↑

(i)

)
,

f ↑
tk = σ

(
W↑

( f )xt + U↑
( f )h

↑
k + b↑

( f )

)
,∀k ∈ C(t),

o↑
t = σ

(
W↑

(o)xt + U↑
(o) h̃

↑
t + b↑

(o)

)
,

u↑
t = tanh

(
W↑

(u)xt + U↑
(u) h̃

↑
t + b↑

(u)

)
,

c↑t = i↑t · u↑
t +

∑

k∈C(t)

f ↑
tk · c↑k ,

h↑
t = o↑

t · tanh
(
c↑t

)
, (3)

where W↑
(·), U

↑
(·), and b↑

(·) are learnable parameters and σ

denotes sigmoid function. i↑t , f ↑
tk are input gate and forget

gates that control the ratio of the information from children
that should be received or forgotten, o↑

t is the output gate. The
bottom-up longitudinal contextual information of ot is saved
in the updated hidden state h↑

t . It can be used for computing
longitudinal contextual information of the ancestors of ot in
following time steps, as shown in the bottom-up process in
Fig. 4.

Similarly, let p(t) denote the parent of ot . The top-down
direction of Bi-TLSTM will collect information from the
ancestors of ot , which is formulated as follows:

i↓t = σ
(
W↓

(i)xt + U↓
(i)h

↓
p(t) + b↓

(i)

)
,

f ↓
t = σ

(
W↓

( f )xt + U↓
( f )h

↓
p(t) + b↓

( f )

)
,

o↓
t = σ

(
W↓

(o)xt + U↓
(o)h

↓
p(t) + b↓

(o)

)
,

u↓
t = tanh

(
W↓

(u)xt + U↓
(u)h

↓
p(t) + b↓

(u)

)
,

c↓t = i↓t · u↓
t + f ↓

t · c↓p(t),
h↓
t = o↓

t · tanh
(
c↓t

)
,

(4)

where i↓t , f ↓
t and o↓

t are the input gate, forget gate, and
output gate. Through these two processes, the longitudinal
contextual information is saved in h↑

t and h↓
t .

3.3.2 Transversal Contextual Propagation

In HET, apart from the dependent association among the
objects along the root-to-leaf paths, more semantic relation-
ships tend to exist among the sibling objects since they share
similar perception priority. Therefore, this transversal con-
text is modeled to strengthen the semantic information. The
most direct way is to regard it as a sequential dependency
modeling problem similar to that in Sect. 3.3.1. However, as
any two sibling objects may be directly related, it is more
reasonable to model them as a graph. Therefore, we propose
two alternative schemes.

The first scheme is employing the bidirectional LSTM
(Bi-LSTM) following (Zellers et al., 2018). For the anchor
object ot and its sibling objects, we first arrange them into a
sequence. As the sequence order will not obviously influence
the performance, we arrange the objects from left to right
according to their horizontal coordinates of the centres of
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Fig. 5 An illustration of the mGAT-based HCPT . Computation of transversal contextual feature for the anchor object ot on level 1 and level 2 is
illustrated in the middle column. Two heads are used in this figure. The right column gives a detailed computation process

the bounding boxes. Let l(t) and r(t) denote the left and
right sibling of ot respectively. The transversal context is
constructed as:

h→
t = LSTM(xt , h→

l(t)), h←
t = LSTM(xt , h←

r(t)), (5)

The LSTM(·) denotes the standard LSTMunit (Hochreiter &
Schmidhuber, 1997). The bidirectional process will collect
all sibling information which is saved in h→

t and h←
t .

Alternatively, as sibling objects are strongly correlated
with each other, we model them as a fully connected graph
and propose the multi-head graph attention (mGAT)-based
(Velickovic et al., 2018) HCPT module. It strengthens the
capability of holistic relational understanding among each
sub-tree in the HET.

Considering a sub-tree with the root object or and its
children set C(r), let Osub = {or } ⋃

C(r) denote these
Ns = |C(r)| + 1 objects, X = {x1, x2, . . . , xNs }, xi ∈ R

d

denote their input features. We enroll the root here unless
it is the virtual root of HET, because in HET, the children
objects could not exist without their parent. There are mul-
tiple attention heads in mGAT-based HCPT and each head
can model specific correlation among the objects (Vaswani
et al., 2017). As depicted in Fig. 5, in each head k among
totally K heads, for the anchor object ot ∈ Osub and any one
object o j ∈ Osub, j �= t , their correlation coefficient ekt j is
computed as:

ekt j = σ
(
W k

a

[
W kxt ;W kx j

])
, (6)

where W k ∈ R
d
K ×d , W k

a ∈ R
1× 2d

K are projection matrices,
[; ] represents concatenation operation and σ denotes Leaky-
ReLU function.

The correlation coefficients are normalized across objects
in Osub except the anchor object ot by softmax function, then
applied to these objects to obtain the aggregated feature. We
concatenate the aggregated features through K heads and add
it to the input feature of ot as a residual part, which results
in the final transversal contextual feature x∗

t of ot :

αk
t j = softmax j (e

k
t j ) = exp (ekt j )

∑

q∈[1,Ns ],q �=t
exp (ektq)

,

x∗
t = xt + ConcatKk=1

⎛

⎝
∑

j∈[1,Ns ], j �=t

αk
t jW

kx j

⎞

⎠ .

(7)

3.3.3 Context Decoding for Scene Graph Inference

With the constructed HET and the HCPmodule, we describe
how to decode the context encoded by HCP and inference
the objects and relationships in the scene graph as illustrated
in Fig. 3.

Firstly we employ a single HCP module, namely O-HCP,
to model contextual information for object recognition. The
input features are {xi }Ni=1 obtained by Eq. (1) and the outputs
are { f oi }Ni=1, where f oi is obtained by:

LSTM−based HCPT : f oi = Wo[h↑
i ; h↓

i ; h→
i ; h←

i ],
mGAT−based HCPT : f oi = Wo[h↑

i ; h↓
i ; x∗

i ],
(8)

where [; ] denotes concatenation and Wo is a projection
matrix. The computation process of the contextual features
above follows Sects. 3.3.1 and 3.3.2.

We utilize another HCPmodule, namely R-HCP, tomodel
contextual information specifically for relationship predic-
tion. The input features are { f oi }Ni=1 and the outputs are
denoted as { f ri }Ni=1.
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Object Decoding With these contextual features, we
decode them to predict the objects and relationships. In HET,
a child object strongly depends on its parent, i.e., informa-
tion of the parent object is helpful for prediction of the child
object. Therefore, we employ a single direction HCPL sub-
module as a decoder to predict objects in a top-downmanner,
as illustrated in Fig. 6. For the object oi , the decoder receives
information from its parent, using [ f oi ;W (2)

e q p] as input,

where W (2)
e is a word embedding matrix and q p is the pre-

dicted category distribution vector of the parent of oi . The
output feature representation hdeci is fed into an MLP classi-
fier to predict the category of oi together with the confidence
si .

Predicate Decoding When predicting the predicate pi j
between oi and o j , we first gather the features of oi and o j

as:

f gi j = [W r f ri ;W r f rj ], (9)

where W r is a projection matrix. On the other hand, we use
the union box of oi and o j to extract the visual feature f v

i j
from the image feature map with RoI pooling operation. We
also follow DRNet (Dai et al., 2017) to build the spatial fea-
ture f si j . The final relationship feature is obtained as:

f ri j = f gi j ◦ ( f v
i j + f si j ), (10)

where ◦ denotes element-wise multiplication. The relation-
ship feature is fed into another MLP classifier to predict
predicate and its corresponding confidence si j . The confi-
dence αi j of the relationship between oi and o j is computed
as the multiplication of the confidence of subject, object,
predicate:

αi j = si · s j · si j . (11)

The confidence is used to sort the relationship.

3.4 Relationship RankingModule

So far, we have obtained objects and relationships in the
scene graph under the guidance of HET. During inference, to
achieve our goal that a scene graph is given in an importance-
first manner, the detected relationships should be manually
attached to HET and present them exactly following the
root-to-leaf paths of HET, i.e., firstly giving the relationships
among objects from the top level, then giving those among
objects from the second level, etc. In this way, we can obtain
an importance-first relationship sequence. However, this pro-
cess is not fully automatic. The model introduced before this
sub-section could only provide the relationship sequence by
sorting the relationships according to the confidenceαi j . This

sequence may be not importance-first because only implicit
structural information is considered when computing αi j . If
we can evaluate the importance of each relationship explicitly
and enroll it into αi j , the model will be able to automatically
generate the importance-first relationship sequence which is
consistent with that derived from HET.

In this sub-section, we further employ a Relation Ranking
Module (RRM) to explicitly estimate the relationship impor-
tance. We intend to encode the global context among all the
relationships so that the importance of a certain relationship
can be reasonably adjusted considering the importance of
other relationships. Therefore, we feed the relationship fea-
ture f ri j into an importance head denoted by �, which is
implemented as a Self-Attention (SA) module (Vaswani et
al., 2017). The importance of the relationship is obtained as:

zi j = LN(�( f ri j )), (12)

where LN denotes a fully connected layer. During inference,
we enroll zi j into αi j so that the resulting α∗

i j for sorting
relationships takes importance into consideration:

α∗
i j = αi j · zi j . (13)

RRM Training There still exists a vital problem: how to
obtain effective supervision to train RRM, as there is no
directly available supervision. We propose two alternative
schemes. The first one is the so-called Direct Supervision
(D-Sup) scheme, i.e., collecting the key relationship annota-
tion as supervision. The key relationships are collected with
the assistance of image caption, based on the thinking that an
image caption almost reveals the most important content in
the image as described in Sect. 2.Wewill introduce the anno-
tation collection process and the resulting VG-KR dataset in
Sect. 4.1.

Nevertheless, as the collection process abovemay be cum-
bersome, we further propose the Approximate Supervision
(A-Sup) scheme, i.e., we intend to replace the key relation-
ship annotationwith some readily available but effective indi-
cators of relationship importance. Intuitively, visual saliency
and spatial scalemaybe suitable cues. As analyzed in Sect. 2,
regions of humans’ interest can be tracked under the guid-
ance of visual saliency, although they do not always form
the major events that humans want to convey. Two exam-
ples are shown in Fig. 7a, b. Besides, the spatial scale is also
an important reference for estimating the perceptive level of
objects, as shown in Fig. 7c. We conduct preliminary statis-
tical analyses to verify whether these two cues are qualified
indicators.

In the field of psychology, perceptual salience is proposed,
which is the cognitive bias that predisposes individuals to
focus on items that are more prominent or emotionally strik-
ing and ignore those that are unremarkable, even though this
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Fig. 6 An illustration of the top-down decoding process for predicting objects. In each time step, an object node receives information from its
parent and its category is predicted. Only the categories of objects on the same root-to-leaf paths with the second object on level 1 (i.e., 〈man〉) are
shown in this figure

Fig. 7 Visually salient objects maybe important in some circumstances
as shown in (a), while may just catch one’s eyesight but will not be
thought important in other cases such as (b). The saliency maps in the
bottom of (a) and (b) are computed by Deng et al. (2018). Object with
large spatial scale (red box) is usually more important than the smaller
object (yellow box), as shown in (c)

difference is often irrelevant by objective standards. Kahne-
man et al. (1982); Bordalo et al. (2012) inspired by these
works, we put forward the so-called cognitive saliency (CS)
to measure the importance of the relationship from humans’
perspective. Considering themeasurement of CS of a specific
relationship, we employ its times being referred within the
five captions of each image, which can be directly obtained
from our collected VG-KR dataset (originally from MS-
COCO). Here, the total number of captions of each image
in VG-KR is 5. Naturally the value of CS ranges discretely
from 1 to 5. The spatial scale and visual saliency of a rela-
tionship rk = 〈oi , pi j , o j 〉 are defined as ui +u j and vi +v j

respectively, where ui and u j denote the normalized area of
the bounding box of oi and o j , vi and v j denote the visual
saliency of oi and o j (the average saliency of the pixels
inside the bounding box which is computed by advanced
salient object detection methods, such as R3Net (Deng et al.,
2018)). If a cue is a qualified indicator, it should be propor-
tional to CS. We randomly sample 50,000 key relationships
from VG-KR and the process is repeated 3 times. In Fig. 8a
and b, we draw the line charts whose Y-axis is CS and X-
axis is spatial scale or visual saliency. They are obtained by
dividing the continuous value space of spatial scale or visual

saliency into 50 intervals and averaging the CS values in each
interval. From these two line charts, we observe that spatial
scale is a qualified indicator, while visual saliency may not
strictly meet the standard because as the visual saliency of
a relationship goes up, the CS drops, i.e., the relationship
with large visual saliency is not as important as expected. To
better understand the reason, we further extract the relation-
ships with the first quarter of spatial scale or visual saliency
and analyze the proportion of each relationship, as shown in
Fig. 8c and d. It is observed that a large part of relationships
with large visual saliency are those between an independent
object and its components, such as hand of man, letter on
sign, and man wearing tie. Actually, these relationships are
indeed not so image-specific and convey little information.
Humans will generally overlook them. However, if the visual
saliency of an object is large, the visual saliency of its com-
ponents will be also large. It explains the phenomenon when
the visual saliency keeps increasing, the CS decreases.

From preliminary analyses above, we know that visual
saliency and spatial scale are positively correlated with the
relationship importance to a certain extent, but the visual
saliency should not be used independently. Consequently, in
our A-sup scheme, we propose to approximate the supervi-
sion using these two simple but effective cues. For each object
oi , we compute its normalized spatial ui and visual saliency
vi as described above. For relationship rk corresponding to
oi and o j , its importance is approximated as:

ψi j = (1 − λ)(ui + u j ) + λ(vi + v j ), (14)

whereλ is a combination factor and its valuewill be discussed
in Sect. 4.2.3. The ψi j of all relationships in the image are
collected and normalized to form a vectorized probabilistic
label �.

3.5 Optimization

The loss function for model optimization is divided into two
parts. The first part is the loss for object and predicate clas-
sification. We adopt the cross-entropy loss. Let yoi and yri j
denote the ground truth category of object and predicate, and
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Fig. 8 Analyses of spatial scale and visual saliency. (a)∼(b) are the line
chartswhich demonstrate the association between the cognitive saliency
(CS) and spatial scale / visual saliency. (c)∼(d) show the proportion of
each relationship with the first quarter of spatial scale/visual saliency

poi and pri j denote the predicted distribution of object and
predicate respectively. The poi (y

o
i ) and pri j (y

r
i j ) are the pre-

dicted probability of the ground truth categories. The loss is
defined as:

Lcls = − 1

Z1

∑

i

log poi (y
o
i )

− 1

Z2

∑

i �= j

log pri j (y
r
i j ). (15)

The second part is the loss for training RRM. When using
D-Sup scheme, as the annotation is binary, i.e., a relationship
is either key or not, we use the binary cross entropy loss. Let
yi j ∈ {0, 1} denote the ground truth. The loss function is:

LD
key = − 1

Z3

∑

i �= j

(yi j log σ(zi j )

+(1 − yi j ) log(1 − σ(zi j ))), (16)

where σ denotes the sigmoid function.
As for A-Sup scheme, we minimize the KL-divergence

between the approximated importance, i.e., the probabilistic
label� ∈ R

M (M is the number of relationships in an image)
and the predicted importance z ∈ R

M (a vector consisting of
zi j of all relationships in an image):

LA
key = K L (softmax(z) || �) . (17)

The overall loss function is:

L = Lcls + γLkey . (18)

In the equations above, Z1, Z2, and Z3 are normalization
factors, whose values are the numbers of items that contribute
to the loss function in a batch.γ denotes balance factor,which
is set to 1 and 1000 forD-Sup andA-Sup scheme empirically.

4 Experiments on Scene Graph Generation

In this section, we extensively evaluate our TGIR model
on three datasets. We first analyse the effect of individual
modules, and then we compare our method with the state-of-
the-art methods.

4.1 Experimental Settings

Datasets: We verify the effectiveness of the proposed
method and compare with other state-of-the-art methods on
two widely used public datasets as well as our collected
datasets:

(1) VRD (Lu et al., 2016) is the benchmarking dataset for
visual relationship detection task, which contains 4000/1000
training/test images and covers 100 object categories and 70
predicate categories.

(2) Visual Genome (VG) is a large-scale dataset with rich
annotation of objects, attributes, and pairwise relationships,
containing 75,651/32,422 training/test images. During the
training stage, 5,000 images are split from the training set for
validation. We adopt the most widely used version of VG,
namely VG150 (Xu et al., 2017), which covers 150 object
categories and 50 predicates.

(3) VG200 and VG-KR are our collected datasets contain-
ing the indicative annotation of key relationships based on
VG. We associate the relationships referred in the annotated
image captions in MS-COCO with those from VG. Con-
cretely, there are 51,498 images which belong to both VG
and MS-COCO. Therefore, the annotation about the rela-
tionship and image caption on these images is available.
They form the subset named VG-COCO (VGC) and we con-
duct three-stage processing on it. (i) Stanford Scene Graph
Parser (Schuster et al., 2015) is used to extract the relation-
ships from the image captions. They make up the set of key
relationships, denoted by RK. (ii) We next cleanse the raw
relationship annotation of VGC following Xu et al. (2017),
keep the most frequent 150 object categories and 50 predi-
cates, and add another most frequent 50 object categories and
30 predicates in RK, in order to keep as many key relation-
ships as possible for the following third step. After dropping
images without relationships in VGC, we get a new subset
VG200 (i.e. 200 object categories) which contains 46,562
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Table 1 Statistics of VG200, VG-KR, and VG150. #Img. denotes “number of images”. Rel. denotes “relationship”

Dataset Images #Img. with
rel.

Object
categories

Predicate
categories

Object
instances

Rel. instances Key rel. instances #Img. with key
rel. instances

VG200 51,498 46,562 200 80 619,119 442,425 101,312 26,992

VG-KR 26,992 26,992 200 80 360,306 250,755

VG150 108,073 89,169 150 50 1,145,398 622,705 – –

Fig. 9 Some examples from VG-KR dataset. Each image is shown with 3 captions and ground truth relationships. The purple ones are key
relationships which correspond to the red contents in captions

images. (3) Finally, we associate RK with the relationships
in VG200. The relationships in VG200 whose subject and
object WordNet synsets (Miller, 1992) can be aligned with
those of relationships in RK are marked as key ones. After
filtering out the images without key relationships in VG200,
here comes the VG-KR which contains 26,992 images. For
both VG200 and VG-KR, we split the training and test set
by 7:3 ratio, leading to 32,510/14,052 training/test images
in VG200, and 18,720/8,272 training/test images in VG-KR.
We additionally split 5,000 images from the training set for
validation.

We show several examples in Fig. 9 and give the detailed
statistics of our datasets in Table 1. The VG200 and VG-
KR contain richer categories, predicates, as well as object
and relationship instances per image compared to VG150.
Moreover,VG-KRcontains indicative annotation of key rela-
tionships. In Fig. 10a, we show the distribution of images that
contain different numbers of key relationships. More than
90% of images contain less than 7 key relationships. Given
each predicate, we explore its probability to make up a key
relationship, as shown by the red bars of Fig. 10c. The predi-
cates with large probability to be key ones, such as throwing,
brushing, and sniffing are usually verbs with rich semantics,
and they are the tailed predicates under a long-tailed predicate

distribution (Tang et al., 2020) as illustrated by the blue line
in Fig. 10c. They are image-specific and when we see these
predicates, a scene can be roughly imagined. While predi-
cates like near, has, and of, which are the head predicates,
are less likely to make up the key relationships. To better
understand the difference of key and trivial relationships, we
give three examples in Fig. 10b.Usually, the relationshipman
throwing frisbee is the main content of an image, but the rela-
tionship head belonging to guy would be seldom mentioned,
and branch growing on tree is usually secondary.

Evaluation: Conventional evaluation for scene graph
generation follows triplet-match rule, i.e., only if three com-
ponents of a triplet match the ground truth will it be a correct
one. We adopt three universal protocols (Xu et al., 2017):
PREDCLS, SGCLS, and SGGEN. Both Recall (R@K) (Xu
et al., 2017) and mRecall (mR@K) (Chen et al., 2019; Tang
et al., 2019) metrics are used where K is set to 20, 50, and
100. Previous works mainly report R@K while recent stud-
ies prefer mR@K which better balances the performance
of each predicate. When evaluating key relationship predic-
tion (on VG-KR), we only adopt the PREDCLS protocol to
eliminate the interference of errors from object detector, and
add a tuple-match rule (only subject and object are required
to match the ground truth) to investigate the ability to find
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Fig. 10 Statistical analysis on VG-KR. a The distribution of images
that contain different numbers of key relationships. b The distribution
of the key relationships consisting of a given predicate. The predicates
throwing, belonging to, and growing on are shown. cEach red bar stands

for the probability that a predicate constitutes a key relationship, which
is the ratio of the number of key relationships and that of all relation-
ships consisting of this predicate. The blue line represents the frequency
of the predicates

proper pairs. Meanwhile, as the number of key relationships
are much less, K is set to a relatively small value, i.e., 5,
10, and 20. When it comes to the VRD dataset which is for
visual relationship detection task, we follow its literature and
additionally adopt PHRDET protocol (Yu et al., 2017) which
allows to predict multiple predicates (i.e., k=1, 10, or 70) for
each pair.

Implementation Details: All models are implemented
with the open source platform PyTorch.2 In our model, the
dimension of hidden features in HCPL and HCPT is 512.
The mGAT-based HCPT uses K = 8 heads. The contex-
tual features { f oi }Ni=1 and { f ri }Ni=1 are of 1024 dimension.
The final relationship feature f ri j is of 4096 dimension. The

GloVe embeddings W (1)
e and W (2)

e are of 200 dimension. To
eliminate wrong hierarchical association in HET, we set the
threshold T to 0.9. Following the literature, we train a Faster
R-CNN object detector (Ren et al., 2015) with ResNeXt101
(Xie et al., 2017) backbone for allmodels,which is pretrained
on MS-COCO, then finetuned on VG150, VG200, and VRD
for evaluation on VG150, VG-KR, and VRD respectively.
The detector is frozen after finishing training. To train the
scene graph generation model, we exploit SGD optimizer
with the initial learning rate set to 0.02 and the batch size
set to 32. The training process lasts for 12 epochs and the
learning rate decreases by a factor of 10 at the 7th and 10th
epoch respectively.

2 Source code and our collected dataset are available at https://github.
com/Kenneth-Wong/TGIR.

4.2 Ablation Study

In this section, we will firstly evaluate the rationality of HET,
then evaluate the effectiveness of HCP, and explore the best
configuration of RRM and A-Sup scheme.

4.2.1 Rationality Evaluation of HET

As HET is constructed heuristically and there is no ground
truth, we begin with validating whether HET has a potential
to reveal humans’ perceptive habits, i.e., the relationships
between the top objects on HET are indeed the key ones,
in an indirect way. We train two models, HCP+RRM and
HCP, and compare the depth distribution of top-5 predicted
relationships of these twomodels. The depth of a relationship
is represented by tuple (doi , do j ) consisting of the depth of
subject and object, and the depth of root is defined as 1. As
shown in Fig. 11a, we observe a significant increment on the
ratio of the depth (2, 2) and (2, 3), and a drop on (3, 3) when
adding RRM. It implies that relationships which are closer
to the root of HET are favoured by RRM. We also analyze
the association between the confidence α∗

i j (Eq. 13) and the
depth of the relationship. We sample 10,000 relationships
from each depth predicted by HCP+RRM model five times.
In Fig. 11b, the confidence decreases as the depth increases.
Therefore, different levels of HET indeed indicate different
perceptive importance of relationships. This characteristic
makes it convenient to reasonably adjust the scale of a scene
graph. When the scale of a scene graph is expected to be
restricted, it is feasible for our scenegraphby cuttingoff some
deep branches of HETwhich are usually trivial relationships,
but it is difficult to realize in an ordinary scene graph.
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Fig. 11 Analyses about the depth. a Depth distribution of top-5 pre-
dicted relationships. The results of the inner and outer rings are from
HCP and HCP+RRM respectively. b The association between the con-
fidence and depth of the relationship

4.2.2 Effectiveness Evaluation of HCP

Weconduct ablative experiments to validate the effectiveness
of the sub-modules of HCP, i.e., HCPL and HCPT . Besides,
we compare Bi-LSTM and mGAT mechanism. When the
HCP configures with a Bi-LSTM-based HCPT sub-module,
we denote it by HCP-B, otherwise we denote it as HCP-G
configured with an mGAT-based HCPT sub-module. We do
not apply RRM. Experiments are conducted on VG150 and
VRD and the results are shown in Table 2. We additionally
provide the result of Motif (Zellers et al., 2018) since when
ablating HCPL , the remaining HCPT would almost degener-
ate to Motif.

Comparing HCPL with HCP-B/HCP-G, it can be inferred
that HCPT contributes to both R@K and mR@K since it
directly propagates the contextual information between all
possibly related objects, and restricts this information prop-
agation process among the objects which do not share the
same parent so that those weak relationships are removed.

Comparing Motif with HCP-B/HCP-G, HCPL which
encourages the longitudinal contextual propagation espe-
cially benefits mR@K. We further compare the predicate-
wise recall of Motif and HCP-G in Fig. 12 where the
predicates are sorted in an descending order from left to right
according to the frequency. It is noted that the improvements
ofmR@Kmainly owe to the improved performance on tailed
predicates. As indicated in Fig. 10c and Sect. 4.2.1, the rela-
tionships consisting of these tailed predicates are usually the
key relationships and they exist between the top objects in
HET, which means that the HCPL benefits the key relation-
ships prediction even without extra supervision.

4.2.3 Evaluation of RRM and A-Sup

We conduct ablative experiments to explore the best
configuration of supervision approximation in the A-Sup
scheme. We adjust λ in Eq. (14), ranging from 0 to 1 uni-

Fig. 12 Per-predicate recall on different predicates. Predicates are
sorted in descending order from left to right according to the frequency

formly, to balance the weights of spatial scale and visual
saliency. Meanwhile, we verify the necessity of global con-
text modeling considered in the design of RRM. When
ranking the relationships, we employ the Self-Attention (SA)
module to model global context of relationships so that the
importance of each relationship could be estimated with
consideration of other relationships. Oppositely, we replace
it with a simple two-layer MLP or an LSTM which is
weaker than SA on context modeling. This ablation study
is conducted on Motif. We report the improvement on R@K
and mR@K on VG-KR dataset after adding RRM, and the
improvement is averaged over different K (K is set to 1, 5,
10, and 20). The results are shown in Fig. 13.

We make two observations: First, as λ increases, the
weight of visual saliency also increases, but the performances
tend to drop. Especiallywhenλ is larger than 0.7, the negative
impact comes into prominence (the improvement is near or
below 0.0%). This phenomenon is obvious onR@K.Consid-
ering the performance of SA on mR@K, the positive impact
first reaches a peak at about λ = 0.1 then drops as λ keeps
increasing. It suggests that visual saliency is not an ideal rela-
tionship importance indicator compared with spatial scale,
which is consistent with findings from previous statistical
analyses (Sect. 3.4). Second, SA basically outperforms MLP
and LSTM with a relatively small λ (as λ becomes larger,
the quality of the approximate supervision declines which
makes this superiority becomes not so obvious), indicating
the necessity of modeling global context when ranking rela-
tionships. Therefore, to balance R@K and mR@K metrics,
we setλ = 0.1 in following experiments so that the SA-based
RRM improves the performances as significant as possible
on both of these two metrics.

4.3 Comparison with State-of-the-Arts

In this section, we compare our proposed method with other
state-of-the-art methods on conventional scene graph gen-
eration/visual relationship detection tasks. Additionally, as
key relationships are especially valuable, we further com-
pare these methods on key relationship prediction task.
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Table 2 Performances (%) of
different ablative models under
the PREDCLS protocol

Dataset Model R@20/50/100 mR@20/50/100

VG150 Motif Zellers et al. (2018) 60.0/66.2/67.5 11.4/14.0/14.9

HCPL 58.4/64.6/66.7 10.9/13.4/14.2

HCP-B 60.1/66.3/67.6 11.7/14.3/15.1

HCP-G 60.2/66.4/67.7 12.7/16.1/17.2

VRD Motif Zellers et al. (2018) 54.0/56.6/56.7 8.2/9.1/9.2

HCPL 54.3/56.6/56.7 8.9/9.6/9.7

HCP-B 54.6/56.8/56.9 9.0/9.8/9.9

HCP-G 54.6/57.0/57.0 9.3/10.2/10.3

The best performances are shown in bold

Fig. 13 The performance improvement after adding RRM under various configurations of A-Sup scheme. Results are obtained under PREDCLS
protocol

4.3.1 Comparison on Conventional Tasks

For comparison on VG150, we compare our TGIR model
with following state-of-the-art methods: KERN Chen et al.
(2019), IMP Xu et al. (2017), MemNet Wang et al. (2019),
Motif Zellers et al. (2018), VCTree Tang et al. (2019)
and Seq2Seq Lu et al. (2021). These methods design a
specific model as introduced in Sect. 2 and we call them
TYPE-Imethods. We denote our model configured with Bi-
LSTM-based HCPT as TGIR-B and that configured with
mGAT-based HCPT as TGIR-G. All of them can be divided
into several key components, including the non-core mod-
ules (e.g., the object detector, relationship instance sampling
module, and the visual feature extractor), and themost impor-
tant core scene graph inference module (e.g., the HCP is
our core scene graph inference module) that most previous
works focus on for improving. However, some works (Tang
et al., 2020) have found that the improvement of the non-
core modules can also achieve better scene graph generation
performances, and this positive effect is even significant than
that from the core scene graph inference module. Actually,
these non-core modules can be easily migrated among dif-
ferent methods. In order to compare different methods as

fair as possible and especially compare different core scene
graph inference modules, referring to Motif (Zellers et al.,
2018), we re-implement some of these methods using the
same implementation scheme for the non-core modules.3 All
models are only trained with the basic classification lossLcls

as described in Eq. (15). On the other hand, we also com-
pare with recent works which propose a general framework,
including TDE Tang et al. (2020), PCPL Yan et al. (2020),
CogTree Yu et al. (2021), DLFE Chiou et al. (2021), and
BASGG Guo et al. (2021). We call them TYPE-II methods.

In Table 3, we list the performances of TYPE-I methods
and TYPE-II methods, and report the results of some TYPE-
I methods re-implemented by ourselves. It can be seen that
our re-implemented versions obtain obvious improvement on
R@K, and even the early work IMP is competitive among
thesemethods.Another observation is thatwhen adopting the
same non-core modules, the performance gap among these
methods has narrowed, which reflects the real gap among
their core scene graph inference modules. Besides, TYPE-II
methods focus on improving the recall of tailed predicates
and thus achieve better mR@K performances, but it usually

3 There exist some differences between the performances of our con-
ference version and this paper.
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comes at the expense of performance drop on R@K. Our
TGIRmethod dominantly surpassesmostmethods especially
on mR@K with mGAT, except that the Seq2Seq employs
reinforcement learning technique which is not the main point
of our work.

Among TYPE-I methods, Motif and VCTree are the most
relevant to ours. TGIR using multi-branch tree structure out-
performs Motif and yields comparable performance with
VCTree which uses a binary tree structure. We observe that
TGIR especially achieves better performances on mR@K,
which should be attributed to the HCPL sub-module as
described in ablation study. Besides, TGIR and VCTree are
the top-2methods in terms ofmR@K. It indicates that hierar-
chical structure is superior to plain one in terms of contextual
information modeling. Comparing TGIR with VCTree, the
tree structure ofVCTree is constructed by gradually selecting
the related pair with themaximum learnable score, which has
less interpretability. Our HET is heuristically generated and
the structure stands for the subordination and juxtaposition
among the objects. Further, TGIR contains two contextual
propagation paths along HET so that those relatively strong
and key relationships included in these two paths are espe-
cially emphasised, which results in better mR@K.

The VRD dataset is originally for visual relationship
detection task, which is very similar to scene graph genera-
tion. Therefore, we make a comparison on VRD dataset as
shown in Table 4. Similarly, we report results of the previous
methods for VRD task in the upper part and the results of our
re-implemented mainstream scene graph generation meth-
ods in the bottom part. The models in the bottom part and
RelDNZhang et al. (2019) use the object detector pre-trained
on MS-COCO and finetuned on VRD. Zoom-Net Yin et al.
(2018) states that they use ImageNet pre-trained weights and
others remain unknown. It is shown that our method yields
better results compared to the state-of-the-arts.

4.3.2 Comparison on Key Relationship Prediction

When it comes to key relationship prediction, we mainly
compare our methods with Motif and VCTree on VG-KR
under the PREDCLS protocol to eliminate the interference
of errors from the object detector.We conduct three groups of
experiments under three settings: (1) “w/o Sup”: Models are
trained on VG200, and directly evaluated on VG-KR. RRM
is not applied. (2)A-Sup:Models are trained onVG200 using
A-Sup scheme, and evaluated on VG-KR. RRM is applied.
(3)D-Sup:Models are trained usingD-Sup scheme, and eval-
uated on VG-KR. RRM is applied. As key relationships are
much less than normal relationships according to Fig. 10a,
we set the K in R@K and mR@K to small values, i.e., 5, 10,
and 20. The results are shown in Table 5.

It is observed that TGIR dominantly outperforms other
two competitors under the three settings. TGIR especially

obtains better performance on R@K under the tuple-match
rule, about 2%higher thanother twomethods, suggesting that
the HET provides hints for estimating the importance of rela-
tionships and capturing humans’ perceptive habits. TGIR-B
performs well on R@K under the triplet-match rule while
TGIR-Gworks better on mR@Kunder the triplet-match rule
and R@K under the tuple-match rule. Comparing the three
settings,models trainedwithD-Sup scheme provide an upper
bound. We find that A-Sup scheme effectively improves per-
formance compared to the setting of no supervision (“w/o
Sup”) and the improvement is especially significant on R@K
under the tuple-match rule. It suggests that the approximate
supervision indeed helps mining the important related pairs.
Finally, RRM works well for all of these methods, which
show its excellent transferability.

Qualitative Analysis We demonstrate some qualitative
results in Fig. 14. Despite some small deviations, HET is
mainly well constructed and close to human’s analyzing pro-
cess. We compare top five relationships predicted by TGIR
with or without importance relationship supervision. It is
shown that the top five relationships predicted by the model
with importance relationship supervision aremainly between
the top objects inHET. It verifies the rationality ofHETagain.
These relationships focus on describing the major events of
the pictures rather than the details.

FailureCasesAnalysisWedemonstrate some failure cases
in Fig. 15. In order to get rid of the interference from the
object detection, the scene graphs are predicted under the
PREDCLS protocol. These failure cases can be categorized
into two types: (1) The HET is not precisely constructed,
for example, in the first case, the engine_1 is wrongly gov-
erned byman_1, whose correct parent node should be bike_1.
Despite this error, the HCPT sub-module still successfully
discovers the strong association between the engine_1 and
the bike_1, and correctly predicts the relationship 〈engine_1,
on, bike_1〉, although this relationship may not be impor-
tant. (2) Sometimes the objects in the image are too dense.
As shown in the second case, since the boat_3 is closed to
boat_1, the model wrongly configures the related pairs, mis-
taking 〈man_1, on, boat_1〉 for 〈man_1, on, boat_3〉.

5 Experiments on Subsequent Applications

In this section, we attempt to conduct some experiments on
subsequent applications to show the value of key relation-
ship. As the scene graph has been widely adopted in image
captioning and cross-modal retrieval, experiments aremainly
conducted on these two applications. Besides, we will val-
idate that the key relationship keeps the major content and
helps restore the original image, through the image genera-
tion experiment.
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Table 5 Performances (%) on VG-KR

w/o Sup A-Sup D-Sup

Tri. R@K Tri. mR@K Tup. R@K Tri. R@K Tri. mR@K Tup. R@K Tri. R@K Tri. mR@K Tup. R@K

Motif‡ 31.1/36.1/45.7 3.4/5.4/7.6 46.7/60.8/81.7 32.5/37.9/45.9 3.6/5.5/7.7 49.0/62.7/82.2 34.2/41.3/47.6 6.3/8.4/10.1 63.1/78.3/88.9

VCTree‡ 31.3/37.0/46.5 3.9/6.2/9.1 46.9/61.9/82.0 32.4/38.0/46.8 4.2/6.4/9.1 50.3/63.1/82.8 35.5/41.7/47.9 6.9/8.7/10.3 63.9/78.1/88.8

TGIR-B 32.0/38.2/47.5 3.9/6.2/8.9 47.8/62.6/82.9 33.5/39.0/47.6 4.2/6.4/9.0 51.4/64.6/83.4 36.3/43.5/49.2 7.1/9.0/11.0 64.9/78.7/90.1

TGIR-G 31.8/37.8/47.1 4.8/7.8/11.0 48.0/63.0/83.8 32.9/38.4/47.4 5.0/7.9/11.1 51.1/64.6/84.2 35.8/42.9/48.0 8.2/10.5/12.1 65.9/80.1/90.6

The best performances are shown in bold
The ‡ stands for our re-implemented results
“Tri. R” and “Tri. mR” stand for R@K and mR@K under triplet-match rule
“Tup. R” stands for R@K under the tuple-match rule
K is set to 5, 10, and 20

Fig. 14 Qualitative results. Four cases are shown. For each case, we
demonstrate the picture with the bounding boxes, its corresponding
HET, the top five relationships attached to the HET predicted by TGIR
with or without importance relationship supervision (the bottom yellow
block and the upper purple block) respectively. In these relationships,

the purple arrows are key relationships matched with ground truth, and
the purple numeric tags next to the relationships are their rankings, e.g.,
the “1” means that the relationship gets the highest score. Besides, we
show the image captions generated using top-2 relationships
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Table 6 Performances (%) on image captioning using different numbers of top relationships as input

Top n Model B@1 B@2 B@3 B@4 ROUGE-L CIDEr SPICE Avg. growth
all GCN-LSTM 72.0 54.7 40.5 30.0 52.9 91.1 18.1

20 TGIR-B (Freq) 73.1 55.7 41.0 30.1 53.5 94.0 18.8

TGIR-B 74.9 58.4 43.9 32.8 54.9 101.7 19.8 0.06

TGIR-B (D-Sup) 75.0 58.2 43.7 32.7 55.1 102.2 19.9

5 TGIR-B (Freq) 70.7 53.2 38.6 28.0 51.7 84.4 17.2

TGIR-B 72.5 55.4 41.2 30.5 53.1 92.6 18.5 1.57

TGIR-B (D-Sup) 73.7 56.7 42.3 31.5 54.0 97.5 19.1

2 TGIR-B (Freq) 68.1 50.8 36.8 26.5 50.2 76.5 15.5

TGIR-B 70.8 53.4 39.2 28.7 51.8 86.4 17.6 2.10

TGIR-B (D-Sup) 72.3 55.2 41.0 30.4 53.1 92.2 18.4

The best performances are shown in bold

Table 7 Performances (%) of
different scene graph generation
methods on image captioning

Supervision Model B@1 B@2 B@3 B@4 ROUGE-L CIDEr SPICE

– Motif 72.7 55.9 40.8 29.4 53.2 99.0 18.4

VCTree 72.9 57.7 41.6 30.3 54.2 100.1 18.5

TGIR-B 74.9 58.4 43.9 32.8 54.9 101.7 19.8

TGIR-G 75.3 59.3 44.2 33.7 55.8 102.9 20.3

D-Sup Motif 73.1 56.3 41.2 29.6 53.4 100.8 18.6

VCTree 73.3 57.8 41.6 30.2 54.7 101.6 18.8

TGIR-B 75.0 58.2 43.7 32.7 55.1 102.2 19.9

TGIR-G 75.8 59.9 44.8 34.4 56.3 103.8 20.6

The best performances are shown in bold
Top 20 relationships are used as input

5.1 Evaluation on Image Captioning

We exploit the key relationships for image captioning. The
experiments are conducted on VG-KR since it contains cap-
tion annotation fromMS-COCO. To generate image caption,
we select different numbers of predicted top relationships and
feed them into the LSTM decoder following GCN-LSTM
Yao et al. (2018). We re-implement GCN-LSTM and evalu-
ate it onVG-KR since it is one of the state-of-the-art methods
and meets our requirements well.

GCN-LSTM conducts graph convolution on the scene
graph and injects all relation-aware region-level features into
a two-layer LSTM decoder. It uses a simple two-layer MLP
classifier to predict the pairwise relationship, which acts as
the front-end scene graph generator. For a fair comparison,
we replace the scenegraphgeneratorwith ourTGIR.Besides,
we feed the relationship features rather than region-level
features into the LSTM decoder, considering that the rela-
tionships which convey the events in the image are more
helpful for description generation.

We compare three variants of ourmethod: (1) TGIR-B, (2)
TGIR-B (Freq): the predicted relationships are artificially
re-ranked according to their frequency in VG-KR, and (3)
TGIR-B (D-Sup): the model is trained using D-Sup scheme.

We feed top n relationships into the decoder to generate the
image caption. All mainstream metrics for image captioning
evaluation are adopted.

As shown in Table 6, TGIR-B (Freq) with top 20 relation-
ships input, outperforms GCN-LSTM because GCN-LSTM
conducts graph convolution using relationships as edges and
uses relation-aware region-level features as input, which is
not as effective as our design that the relationship features are
directly fed into the decoder. After applying D-Sup scheme,
there is consistent performance improvement on overall met-
rics. This improvement is more and more significant as the
number of input top relationships reduces. It is reasonable
since the impact centers at top relationships. It suggests
that our method provides more essential content with as
few relationships as possible, which contributes to efficiency
improvement.

In Table 7, we compare the performances of different
scene graph generation methods on image captioning. It’s
shown that no matter using or not using key relationship
supervision, our methods surpass other scene graph genera-
tion methods.

In Fig. 14, we show the image captions generated using
top-2 relationships as input. In the second sample, when the
top-2 relationships are 〈woman, wearing, boot_1/boot_2〉,
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Fig. 15 Failure cases analysis. For each case, we demonstrate the pic-
ture with the bounding boxes, its corresponding HET, the top five
relationships attached to the HET predicted by TGIR-B (D-Sup). The
meanings of the purple arrows and numeric tags are the same as those
in Fig. 14

the generated caption cannot capture the essential content
that the woman is holding an umbrella. When the top-2 rela-
tionships contain 〈woman, holding, umbrella〉, the caption
successfully reveals the major content. In some cases, we
observe that the top-2 relationships are not totally consistent
with the image caption. It may because of the bias prob-
lem in the literature of image captioning. Besides, as the
input contains visual features, it is difficult to fully restricted
information beyond the top-2 relationships. Despite this, it
still suggests that key relationships are more helpful for gen-
erating a description that highly fits the major events in an
image.

5.2 Evaluation on Cross-Modal Retrieval

As key relationships are claimed to be most relevant to the
major events in an image, it is expected that they benefit the
cross-modal retrieval. Specifically, we exploit the widely-
used image-text matching model SCAN (Lee et al., 2018) to
help compute the similarity between text and image. 1,000
images are randomly chosen from the test set of VG-KR
as the image gallery, and the predicted top 1 or 5 relation-
ships are collected as the text gallery, which are converted
into short sentences in “subject-predicate-object” style. We
design three settings for computing text-image similarity: (1)
using top 1 relationship (Top-1), (2) using top 5 relationships
(Top-5), and (3) using the single sentence by connecting the
top 5 relationships (Top-5-CON). The recall (R@K, K is 1,
5, 10) and the median rank (Kim et al., 2019) of the cor-
rectly retrieved images or text are used as the metrics. We
mainly use three models to generate the sorted relationships:
(1) TGIR-B, (2) TGIR-B (A-Sup), which is trained using

A-Sup scheme, and (3) TGIR-B (D-Sup), which is trained
using D-Sup scheme. The results are shown in Table 8. It is
shown that under all settings, the retrieval performance will
be improved using more important relationships. It suggests
that the key relationships are much more image-specific and
therefore they are more practical for supporting other tasks.

Similar to Sect. 5.1, we compare different scene graph
methods on cross-modal retrieval as shown in Table 9. TGIR
methods performs better with or withour key relationship
supervision.

In Fig. 16, we demonstrate some qualitative results. In
these samples, the major events in the query image (left col-
umn) can be decomposed into several key relationships (as
shown in the scene graph). The key relationships make it
possible to designate the target content to be retrieved, e.g.,
to retrieve man holding board or man standing on beach in
the third sample, while it is difficult to achieve this goal with
those trivial relationships.

5.3 Qualitative Evaluation on Image Generation

Scene graph can be applied to image generation. Extracting
the key relationships is helpful for generating the target image
that meets the requirements.

We apply the sg2immethod (Johnson et al., 2018) and use
the top 5 relationships from TGIR-G (D-Sup) and TGIR-
G respectively as input. The qualitative results are shown
in Fig. 17. It is observed that the relationships predicted by
TGIR-G (D-Sup) are more important and thus the generated
images are roughly more consistent with the original ones,
although it’s difficult to generate a high-resolution compli-
cated scene image. For example, in the first row, TGIR-G
(D-Sup) successfully focuses on the main content, the build-
ing with a clock, while the car is secondary. In the third
row, TGIR-G (D-Sup) notices that the main content is “ele-
phant near elephant”, and thus two elephants can be roughly
observed from the generated image.

6 Conclusion

In this work we propose a new scene graph modeling for-
mulation and make an attempt to push the study of scene
graph generation towards practicability and rationalization.
We generate a hierarchical scene graph inspired by humans’
scene parsing procedure, and further prioritize the key rela-
tionships as far as possible. Experimental results show
that the reasonable constructed hierarchical scene structure
contributes to scene graph inference and boosts the key rela-
tionship prediction. It is found that some objective cues are
effective for estimating the relationship importance. Besides,
experiments on image captioning and cross-modal retrieval
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Fig. 16 The text-to-image retrieval results using some key relationships in the scene graph
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Fig. 17 Image generation results using top 5 relationships from TGIR
and TGIR-G (D-Sup) model

suggest that key relationships are not just for appreciating,
but indeed have great potential to support other applications.

Generally, hierarchical scene graph generation has two
additional advantages.As illustrated inSect. 4.2.1, the associ-
ation between the levels of HET and relationship importance
makes it possible to reasonably and conveniently adjust the
scale of a scene graph.When serving for subsequent applica-
tions, the scale of a scene graph usually should be restricted.
The current common practice is to keep the relationships
with the highest triplet scores without thinking their cor-
respondence with the main content of the image. A more
reasonable practice is to keep the key relationships. Further-
more, during the scene graph inference stage, conventional
practice requires exhaustive relationship prediction for every
pair of objects. Ourmethod has potential to take a further step
towards efficient inference, getting rid of the O(N 2) com-
plexity (Li et al., 2018) of the conventional practice, i.e., only
the relationships between a parent and its children nodes, and
any two sibling nodes are predicted.We intend to improve the
construction of HET in our future work so that more efficient
inference is possible while the accuracy is still guaranteed.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01817-
7.
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